SOIL CARBON SEQUESTRATION AND GHG EMISSION IN MEDITERRANEAN CROPLANDS

> EDUARDO AGUILERA LUIS LASSALETTA

Sociedad Española de Agricultura Ecológica

Outline

- 1. **Review:** factors involved in net carbon storage and options for SOC stock enhacement
- 2. **Meta-analysis:** Carbon content in organic versus conventionally managed soils: preliminary results
- 3. **Modelling:** full GHG accounting in organic and conventional rainfed olive orchards

Review

Factors involved in net carbon storage and options for SOC stocks enhacement

In collaboration with:

Andreas Gattinger Matthias Häni

Review: factors involved in net C storage and options for SOC stock enhacement

- Woody and herbaceous cropping systems
- Irrigation
- N fertilization
- Agroforestry
- Soil Inorganic Carbon (SIC)
- Organic matter imports
- □ Tillage effects
- Organic management

Woody and herbaceous cropping systems

WOODY

- Soil conservation practices can minimize erosion and enhace SOM and yields at the same time
- Most remarkable practices for C sequestration are:
 - Cover crops
 - Prunning residues
 - Agro-industrial wastes

HERBACEOUS

- Self-produced organic inputs are limited by residues availability
- Straw retention and green manures may be good practices, but they can decrease usable yields
- OM imports may be needed to achieve sequestration

Irrigation

- It can promote C sequestration by boosting primary productivity
- But it can also cause SOC decrease by enhacing soil respiration
- There is a high sequestration potential if high OM recycling rates are adopted

Nitrogen fertilization

- Effects on SOC are unclear: positive, negative and neutral effects have been found
- Positive effects are presumably linked to higher productivity
- Negative effects probably occur due to N-induced increase of SOC mineralization rate

Soil inorganic carbon

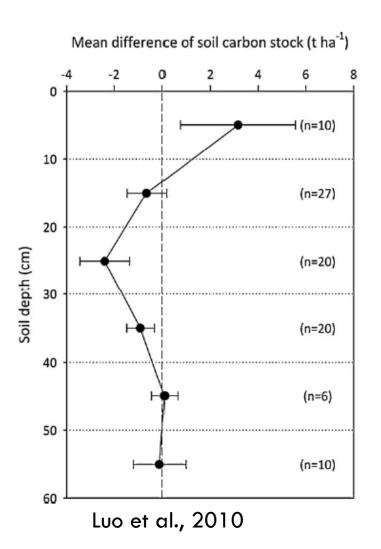
- This soil C pool is usually neglected, but it can represent a high proportion of soil mass in many Mediterranean soils
- Irrigation can promote SIC formation or loss depending on water and soil properties
- SIC depletion has been detected in soils affected by N over-fertilization and olive mill wastes evaporation ponds

Agroforestry

□ Very few studies

Hedgerows can enhace SOC in nearby croplands many meters away

□ Effects of intercroped trees on crop yield are unclear

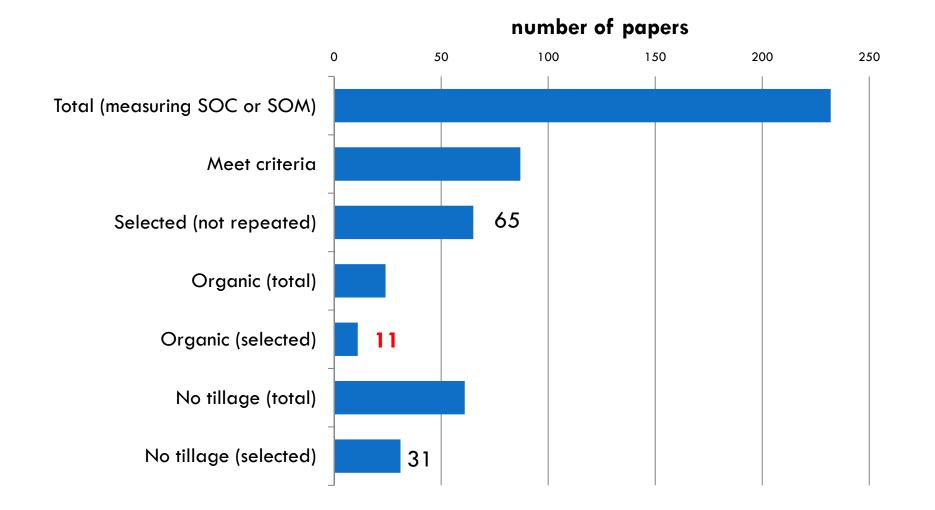

Organic matter imports

- Municipal solid wastes and sewage sludge are far from reaching the required standards for organic farming.
- Manures use is burdened by insufficient animal integration
- Agro-industrial wastes: many examples of successful soil performance if they are composted

Tillage

61 papers have been found studying tillage effects

- SOC increase related to CT has been measured in most cases, but it can be caused by shallow sampling
- A meta-analysis is being to address this question (data not shown)


Meta-analysis

Organic management effect on soil organic carbon storage

In collaboration with:

Andreas Gattinger Matthias Häni

Data selection for Meta-analysis

□ 3 parameters have been chosen for the comparison

■ SOC (g C kg soil⁻¹)

C stock (Mg C ha⁻¹)

C sequestration (Mg C ha⁻¹ y⁻¹)

Analysis perfomed with Comprehensive Meta Analysis software

SOC (g C kg soil⁻¹)

□ N=10

□ n=16

- Data have only been transformed from other measure if there was enough information
- Studies in California (2), Italy (3), Spain (3), Greece (1) and Turkey (1)

Index: Standard Differences in means

SOC (g C/kg)

Model	Study name	Subgroup within study	Outcome	Time point		Std diff	in means and	Weight (Fixed)	Weight (Random)		
					-4,00	-2,00	0,00	2,00	4,00	Relative weight	Relative weight
	Clark Drinkwater García Ruiz García Ruiz Lagomarsin Lagomarsin Lagomarsin Marinari Marinari Mazzoncini Melero Monokrous Monokrous Okur Okur	Blank	SOC (9 SOC (9)SOC (9 SOC (9)SOC (9)SO	8,000 7,000 7,300 8,000 4,000 4,000 25,000 12,000 5,000 5,000 5,000 5,000 6,000 10,000 10,000		-			-	3,54 10,67 21,37 3,56 6,77 6,86 6,28 5,26 6,42 9,73 3,54 6,01 6,03 1,32 1,32 1,32	4,72 9,40 12,48 4,74 7,33 7,39 7,00 6,24 7,09 8,98 4,72 6,80 6,82 2,09 2,09
	Okur	FYM + CC +		10,000				-		1,32	2,09
Fixed							-	-			
Random								+-			

SOC (g C/kg)

Model	Study name	Subgroup within study	Outcome	Time point	Std diff in means and 95% CI					Residual (Fixed)		Residual (Random)	
					-4,00	-2,00	0,00	2,00	4,00	Std Re	sidual	Std R	esidual
1	García Ruiz García Ruiz Lagomarsin Lagomarsin Marinari Marinari Mazzoncini Melero Monokrous	Blank pea Tomato	SOC (g SOC (g	8,000 7,000 7,300 8,000 4,000 4,000 25,000 5,000 5,000 5,000 5,000 5,000 10,000 10,000 10,000		-			-	0.99 0.29 -1,63 -0,60 -0,24 -0,38 0,35 1,26 0,20 0,15 0,99 -1,00 -1,94 2,10 2,10 2,10		0,73 0,03 -1,09 -0,64 -0,34 -0,45 0,13 0,89 0,01 -0,07 0,73 -0,94 -1,69 1,90 1,90	
Fixed Random		an	(1754 508 77) 				1	- -					

Fixed effects

Standard difference in means: 0,928 p-Value: <0,001

Random effects

Standard difference in means: 1,043 p-Value: <0,001

C Stock (Mg C ha⁻¹)

□ n=17 □ N=11

- Some bulk density data has been estimated with a pedotransfer function based on Mediterranean soil data
- Studies in California (3), Italy (3), Spain (3), Greece (1) and Turkey (1)

Index: Standard Difference in means

C Stock (Mg C ha⁻¹)

Model	Study name	Subgroup within study	Outcome	Time point	Std diff in means and 95% CI							
					-4,00	-2,00	0,00	2,00	4,00			
	Clark Drinkwater García Ruiz García Ruiz Kong Lagomarsin Lagomarsin Lagomarsin Marinari Marinari Marinari Mazzoncini Melero Monokrous Monokrous Okur Okur Okur	Blank Blank pea Tomato	SOC (Mg SOC (Mg	8,000 7,000 7,300 8,000 10,000 4,000 4,000 4,000 25,000 12,000 5,000 5,000 5,000 5,000 6,000 10,000 10,000					_			
Fixed Random							-	-				

Fixed effects

Standard difference in means: 0,882 p-Value: <0,001

Random effects

Standard difference in means: 1,01 p-Value: <0,001 C sequestration rate (Mg C ha⁻¹ y⁻¹)

□ The data set is the same as C stock's

But C sequestration rate integrates temporal data

Standard Deviation has been calculated from C stock SD data

Index: Raw Differences in means

C sequestration rate (Mg C ha⁻¹ y⁻¹)

Raw Differences in means

Model	Study name	Subgroup within study	Outcome	Time point	Samp	vle size	Difference in means and 95% CI				Weight (Fixed)	Weight (Random)	
					Ecológico	Convencion	-4,00	-2,00	0,00	2,00	4,00	Relative weight	Relative weight
	-	Blank Blank pea	Seq. Rate (Mg Seq. Rate (Mg Seq. Rate (Mg Seq. Rate (Mg Seq. Rate (Mg Seq. Rate (Mg	7 7 8 10 4	4 10 18 3 3 6 6	4 10 18 3 6			+++++	-		1,78 1,46 5,38 1,60 2,22 8,87	3,69 3,14 8,04 3,38 4,40 10,43
	Lagomarsin Marinari Marinari Mazzoncini Melero Monokrous	Tomato wheat Grossetto Viterbo Blank Blank 5 años 6 años CC +	Seq. Rate (Mg Seq. Rate (Mg	4 25 12 5 6 5 6	6 6 6 9 4 5 5 3	6 6 9 4 5 5 3		-	[+++]+	-		0,48 2,22 15,37 3,92 0,38 0,05 0,37 2,42 32,46	1,15 4,39 12,93 6,61 0,94 0,13 0,91 1,99 15,64
Fixed Rando	Okur Okur	FYM + CC	Seq. Rate (Mg Seq. Rate (Mg	10	3	3 3			+++++++++++++++++++++++++++++++++++++++			10,18 12,83	11,08 12,15

Fixed effects

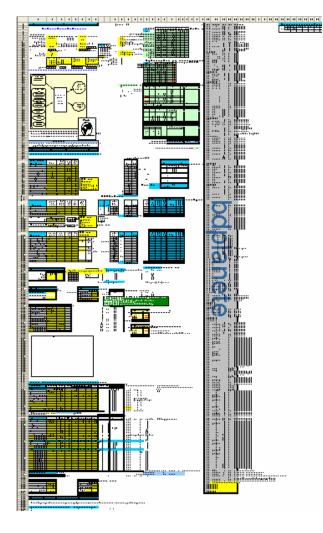
Difference in means: 0,335 Mg C ha⁻¹ y⁻¹ p-Value: <0,001

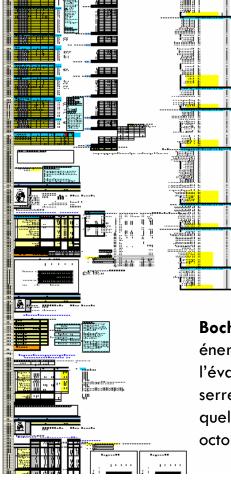
Random effects

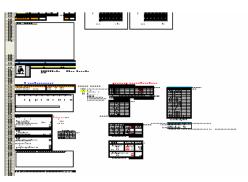
Difference in means: 0,377 Mg C ha⁻¹ y⁻¹ p-Value: <0,001

Preliminary conclusions

- Organically managed soils in Mediterranean areas have a higher SOC concentration than conventional soils (p<0,001)
- Organically managed soils in Mediterranean areas contain larger SOC stocks than conventional soils (p<0,001)
- C sequestration rate under organic management is 0,38 Mg C ha-1 y-1 higher than under conventional managemenent
 - This result is preliminary
 - Weighting method will probably be changed
 - Some treatments may be withdrawn


Modelling


Full GHG accounting in organic and conventional rainfed olive orchards


In collaboration with:

Gloria Guzmán Antonio Alonso

PLANETE model

Bochu, J.L., 2002. PLANETE: méthode pour l'analyse énergétique des exploitations agricoles et l'évaluation des émissions de gaz à effet de serre. Colloque national: Quels diagnostics pour quelles actions agroenvironnementales? 10 et 11 octobre, Solagro, pp. 68–80.

Changes in the model

 N₂O emission factor has been changed to 1% (IPCC, 2007)

□ Some missing data has been included

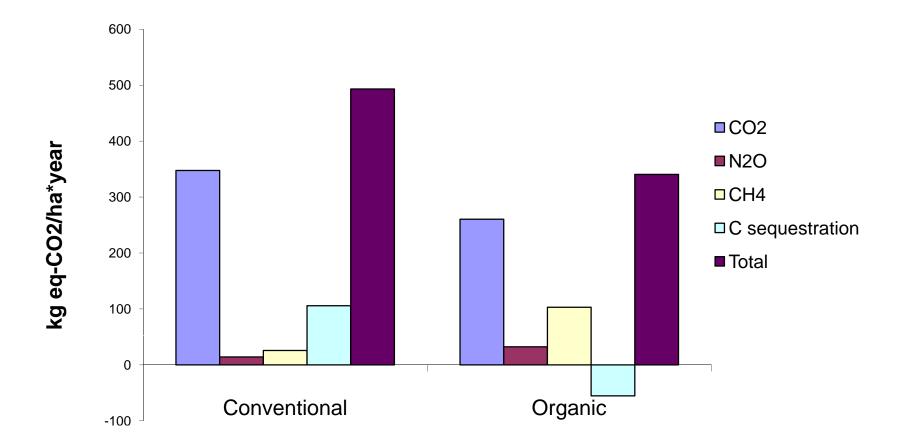
A carbon sequestration module has been coupled to PLANETE

Carbon sequestration module

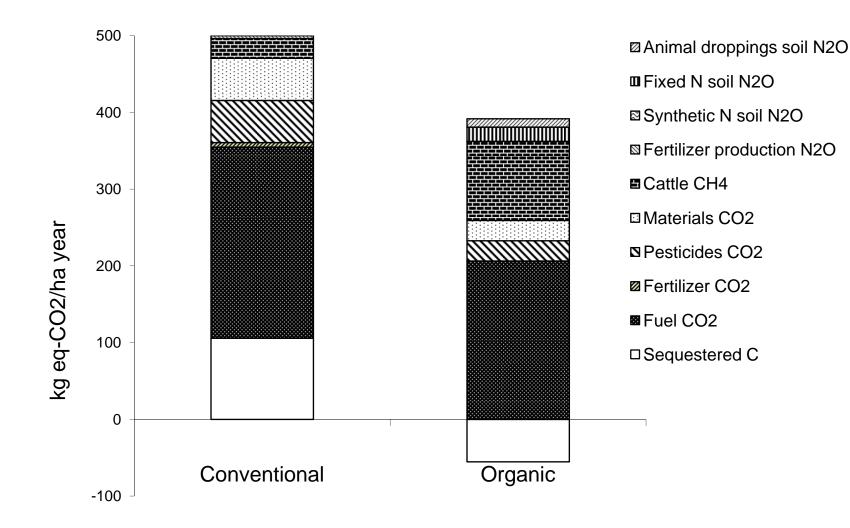
Based on Henin-Dupuis (1945)

□ A static organic C pool has been added

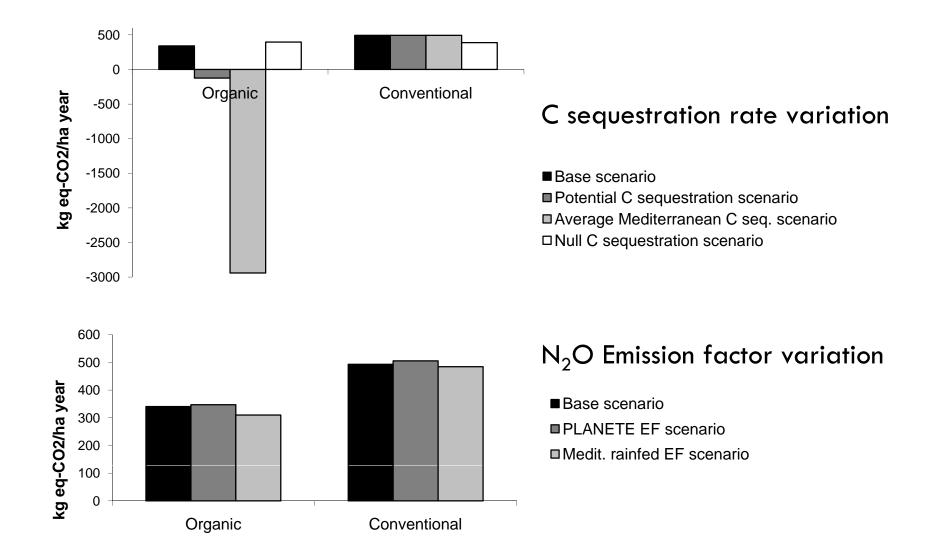
K1 and k2 values have been obtained from recent literature


Study area

- 28 conventional and 25 organic olive growers have been interviewed
- Los Pedroches, Córdoba (South Spain)
- Subhumid Mediterraean climate
- 🗆 Rainfall: 600 mm
- □ Stony, acid soils. Steep slopes.
- Rainfed conditions
- Very low productivity
- Very extensive management
- High cattle integration


Study area

Organic and conventional GHG budget


Organic and conventional GHG budget

Scenarios

	N ₂ O Emission factor	C sequestration		
Base scenario	1%	Henin-Dupuis		
Nitrous oxide				
Mediterranean rainfed EF scenario	0,1-0,11%*	Henin-Dupuis		
PLANETE EF scenario	2%	Henin-Dupuis		
Carbon sequestration				
Potential C sequestration scenario	1%	H-D (full biomass recycling)		
Average Mediterranean C sequestration scenario	1%	0,91 Mg ha ⁻¹ eco		
Null C sequestration scenario	1%	0 Mg ha⁻¹		

Performance of different scenarios

Thank you very much!!!

Sociedad Española de Agricultura Ecológica