

Research Institute of Organic Agriculture Forschungsinstitut für biologischen Landbau Institut de recherche de l'agriculture biologique

Carbon levels in agricultural soils under organic and non-organic management – a meta analysis

Andreas Gattinger

- > Introduction and objectives
- > Material and Methods
- > Results I: Descriptive statistics
- > Results II: Explorative data analysis
- > Results III: Meta analysis on soil carbon levels and stocks
- > Results IV: Factors influencing soil carbon levels
- > Summary and conclusions

FiBL www.fibl.org

> Introduction and objectives

- > Material and Methods
- > Results I: Descriptive statistics
- > Results II: Explorative data analysis
- > Results III: Meta analysis on soil carbon levels and stocks
- > Results IV: Factors influencing soil carbon levels
- > Summary and conclusions

Aims of the meta study

- Quantifying carbon contents, stocks and sequestration rates in soils under organic and non-organic management
- > Analysing factors influencing soil carbon levels:
 - Continent
 - Climate
 - Landuse (arable, grassland, horticulture-orchard, horticulture-vegetables)
 - Management (ORG, Non-ORG)

> Introduction and objectives

> Material and Methods

- > Results I: Descriptive statistics
- > Results II: Explorative data analysis
- > Results III: Meta analysis on soil carbon levels and stocks
- > Results IV: Factors influencing soil carbon levels
- > Summary and conclusions

Literature search, data acquisition and processing

- 1. Literature search
- 2. Literature review/evaluation
- 3. If positive: integration into data matrix and parametrisation
- 4. Descriptive and explorative statistics with SPSS software
- 5. Meta analysis with Comprehensive Meta Analysis software

1. Literature search: Details

> Online searches in:

CAB Abstracts http://www.cabi.org Google Scholar http://scholar.google.com ISI Web of Knowledge (including Web of Knowledge with Conference Proceedings, BIOSIS Previews) http://apps.isiknowledge.com Scopus http://www.scopus.com SCIRUS http://www.scirus.com/ AGRICOLA http://agricola.nal.usda.gov Scielo http://www.scielo.org GeoRef database http://www.ovid.com/ ScienceDirect http://www.sciencedirect.com Organic Eprints <u>http://www.orgprints.org</u> using the search terms (abstract/title/keywords): "carbon AND soil AND conventional"

1. Literature search: Details

- > Evaluation of the references in the 5 most cited (suitable) papers
- > Because of poor data sources from developing (southern) countries:
 - Recognised experts of that field of research were contacted to contribute further ideas on resource identification and invited to share relevant publications or data
 - "Call for soil carbon data" by poster at "Tropentag 2010" in Zürich
- > Literature search is open until manuscript is submitted

2. Literature review/evaluation

Qualifying criteria:

- only reviewed papers: a) peer-reviewed scientific journals
 b) conference proceedings/book chapters/dissertations
- Only studies based on pairwise comparisons (under similar site conditions) for organic and conventional farming practices are considered
- In 1 case a fertiliser experiment is included (manure vs. mineral) all other studies are based on farming system comparisons

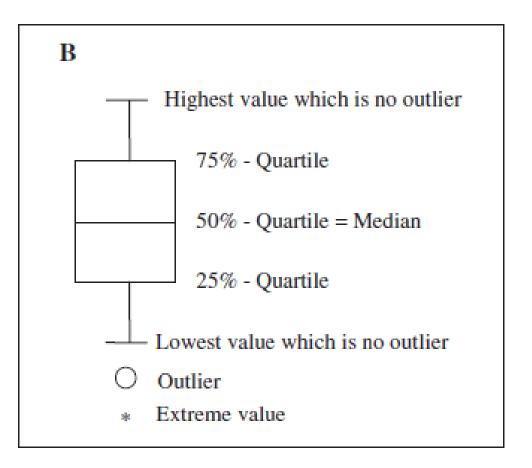
- > Introduction and objectives
- > Material and Methods

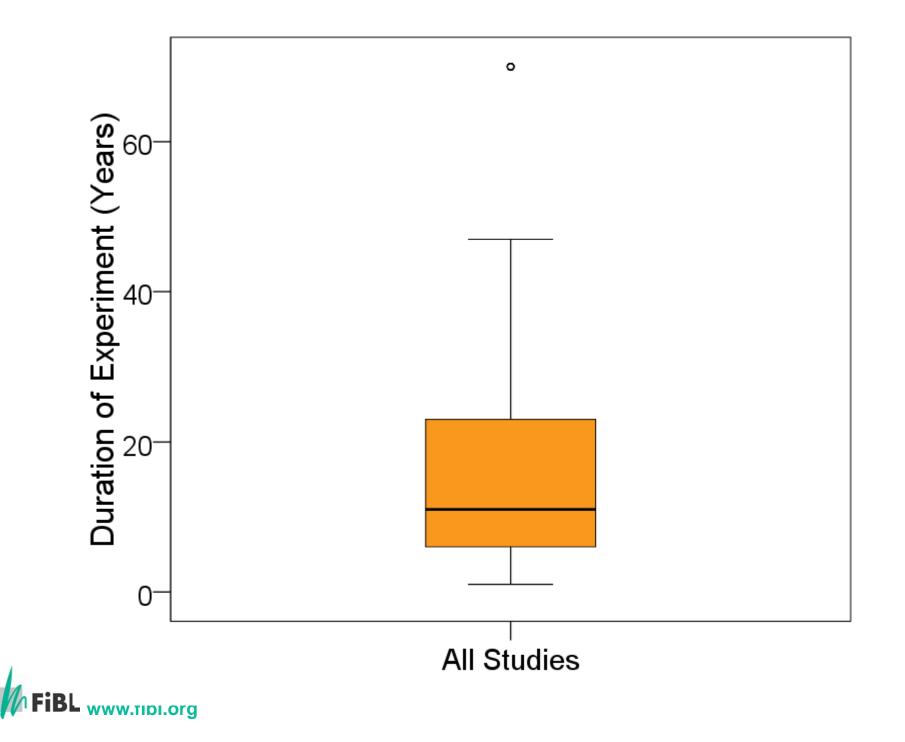
> Results I: Descriptive statistics

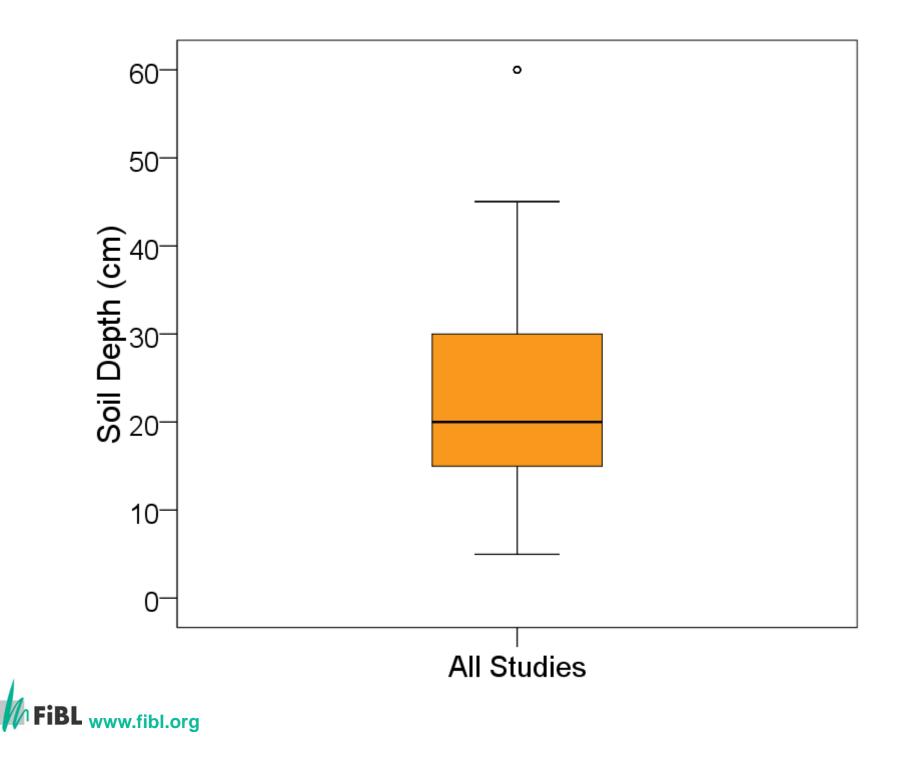
- > Results II: Explorative data analysis
- > Results III: Meta analysis on soil carbon levels and stocks
- > Results IV: Factors influencing soil carbon levels
- > Summary and conclusions

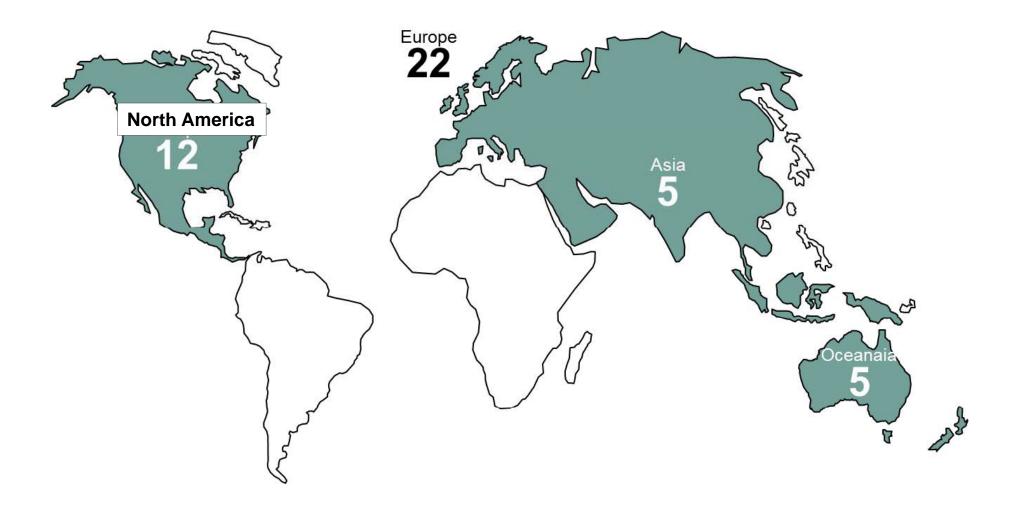
Soil carbon under organic farming

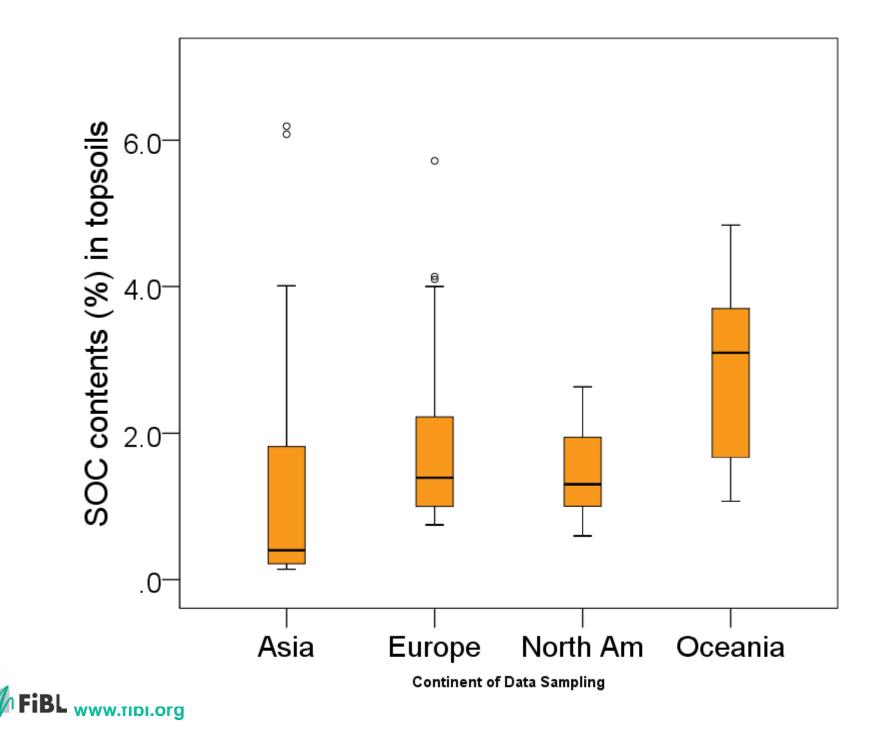
Number of publications included:
 45 in total for meta-study consisting of:

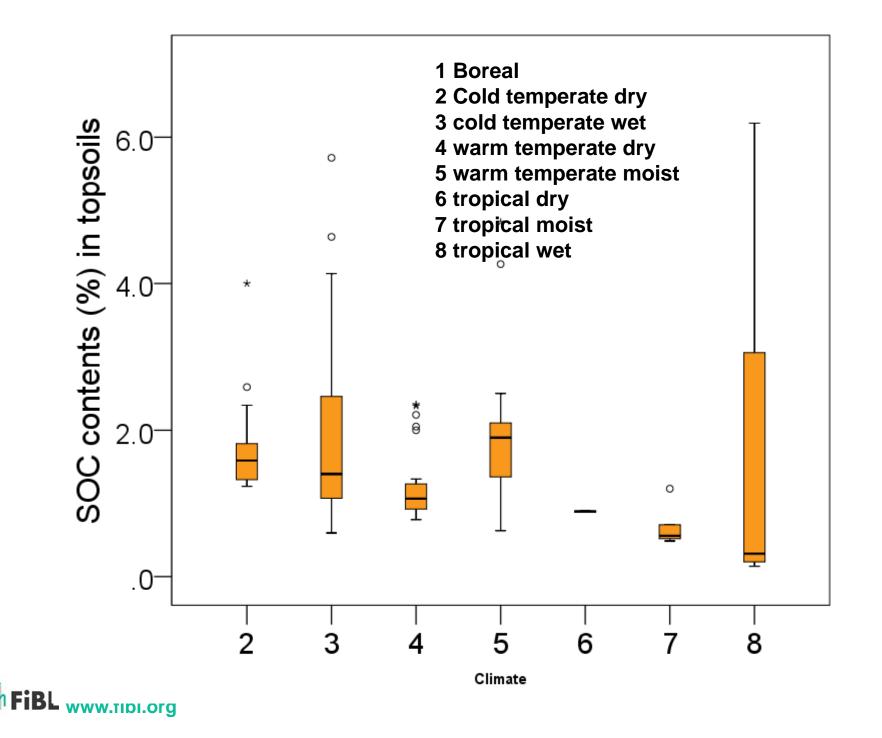

- 37 peer-reviewed paper from scientific journals
- 8 conference proceedings/book chapters
- > These 45 publications are based on pair-wise system comparisons. These are all from 44 field research projects consiting of:
 - 21 long-term plot experiments
 - 5 field trials
 - 18 farm comparisons
- > These 45 publications based on 44 field research projects encompass 280 data sets (lowest data aggregation level: general statistics) based on 2477 samples (meta analysis)

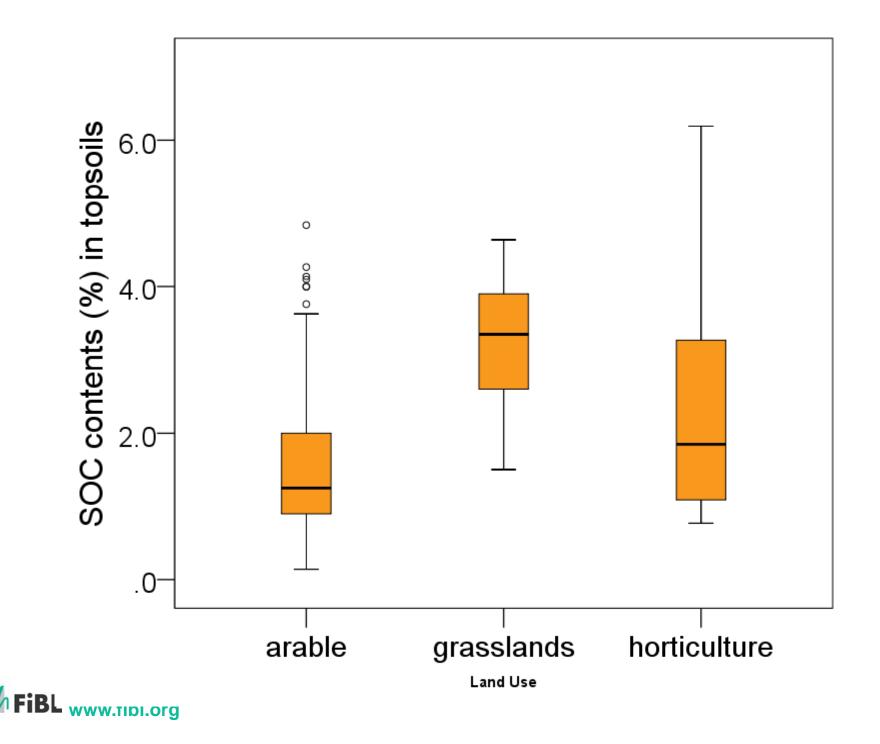

See also excel list for summary of the data matrix

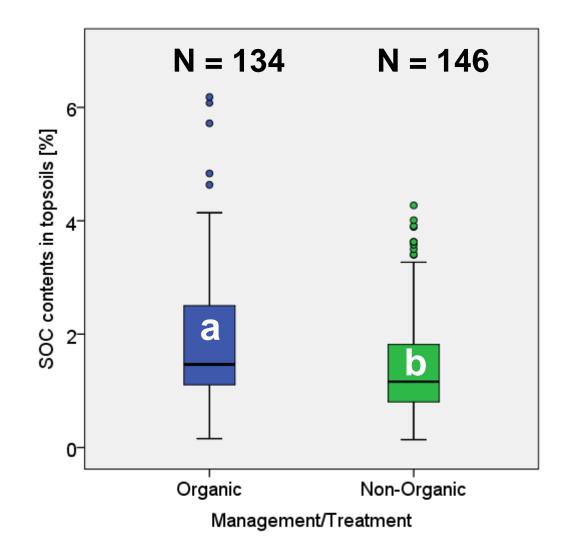


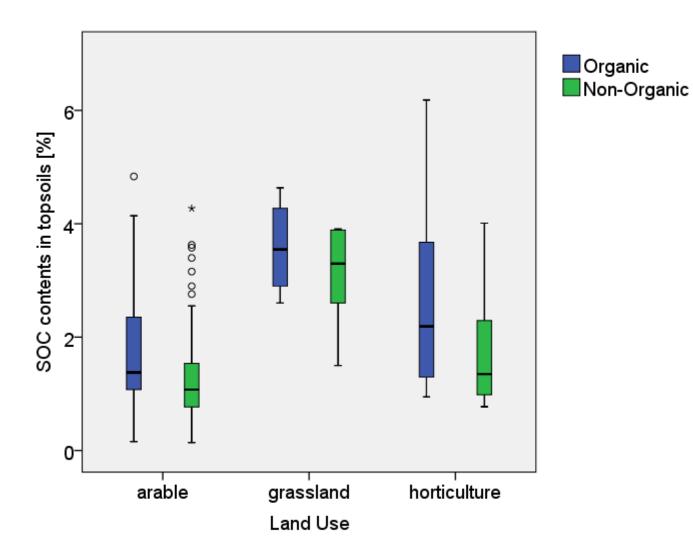

What is a box plot?







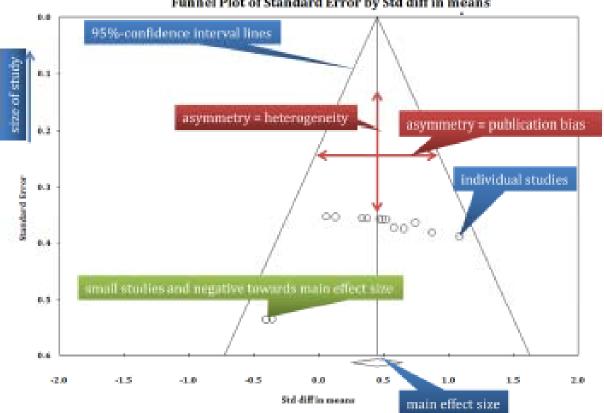

- > Introduction and objectives
- > Material and Methods
- > Results I: Descriptive statistics
- > Results II: Explorative data analysis
- > Results III: Meta analysis on soil carbon levels and stocks
- > Results IV: Factors influencing soil carbon levels
- > Summary and conclusions



In average (median): ORG: 1.47% non-ORG: 1.16%

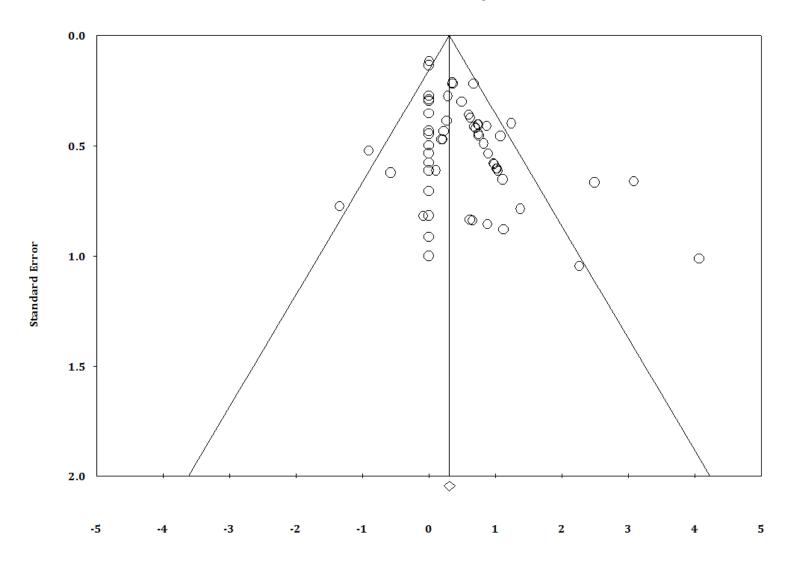
FiBL www.fibl.org

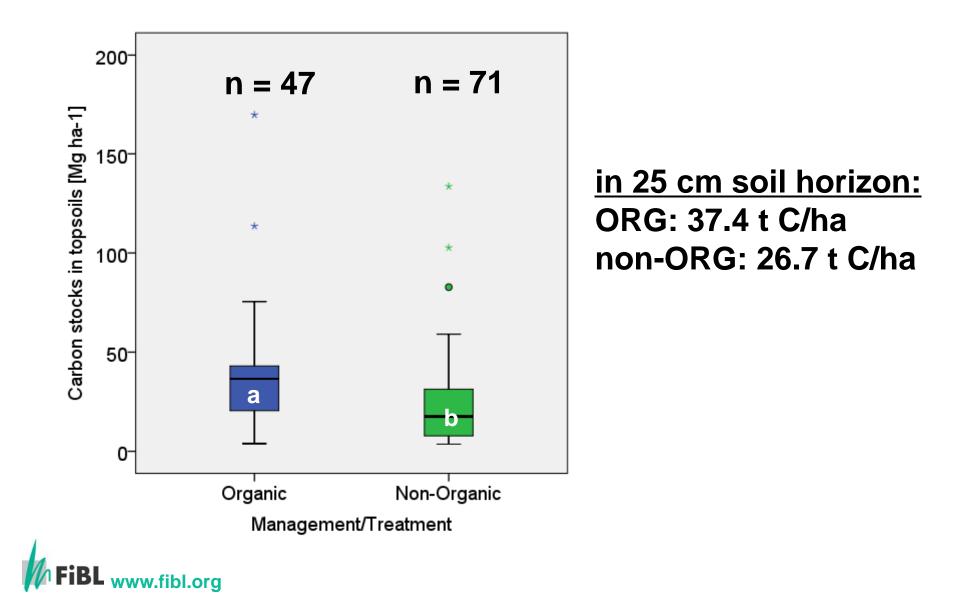
- > Introduction and objectives
- > Material and Methods
- > Results I: Descriptive statistics
- > Results II: Explorative data analysis
- > Results III: Meta analysis on soil carbon levels and stocks
- > Results IV: Factors influencing soil carbon levels
- > Summary and conclusions

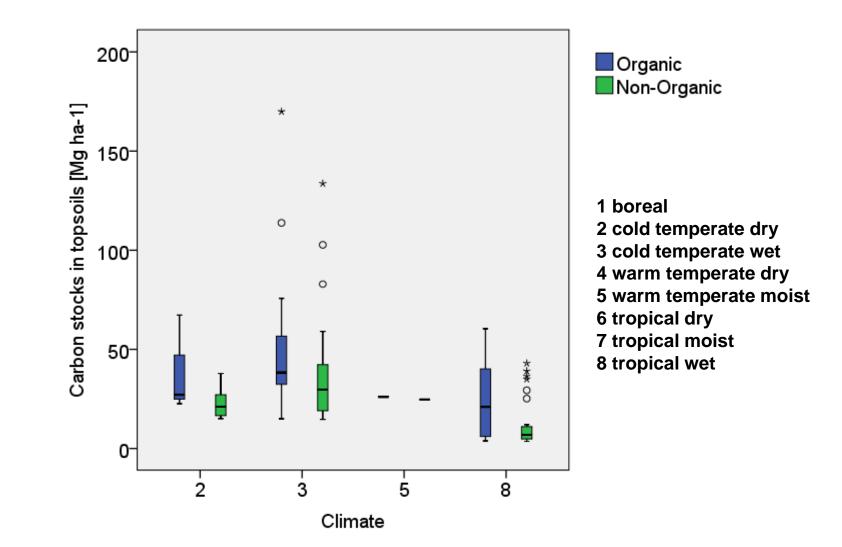

Study name	Subgroup within study			Stati	stics for each	study			Std diff in means and 95% Cl -4.00 -2.00 0.00 2.00 4.00				
		Std diff in means	Standard error	Variance	Lower limit	Upper limit	Z-Value	p-Value	-4.00	-2.00	0.00	2.00	4.
Canali 2005	Citrus	0.285	0.274	0.075	-0.251	0.821	1.042	0.298			++-		
Canali 2009	Citrus	0.871	0.410	0.168		1.676	2.123	0.034			+	—	
Clark et al 1998	0-15 cm	0.495	0.299	0.090	-0.092	1.082	1.653	0.098			++-	-	
Clark et al 1998	15-30 cm	-0.000	0.296	0.088	-0.580	0.579	-0.001	0.999			<u> </u>		
elate and Cambardella, 2004	June 1998	0.001	0.577	0.333	-1.131	1.132	0.001	0.999				-	
Delate and Cambardella, 2004	November 1998	0.001	0.612	0.375	-1.199	1.201	0.001	0.999		.		-	
Derrick & Dumaresq 1999	Org-to-Con-Comparison	0.269	0.387	0.150	-0.490	1.027	0.694	0.488			_ <u>+</u> +		
Eltun et al 2002	Arable	0.001	0.707	0.500	-1.385	1.387	0.001	0.999		-		-	
Itun et al 2002	Forage	0.001	0.707	0.500	-1.385	1.387	0.001	0.999		-		-	
Eyhorn et al. 2007	Cotton	0.006	0.115	0.013	-0.219	0.231	0.050	0.960			+		
Fliessbach et al 2007	Fertilization manure level 1	0.000	0.354	0.125	-0.693	0.693	0.001	0.999			 		
Fliessbach et al 2007	Fertilization manure level 2	0.000	0.354	0.125	-0.693	0.693	0.001	0.999			_		
Fraser et al 1988	0-7.5 cm	0.001	0.612	0.375	-1.199	1.201	0.001	0.999				-	
Fraser et al 1988	15-30 cm	0.001	0.577	0.333	-1.131	1.132	0.001	0.999			-	-	
Friedel et al 2000	Org-to-Con-Comparison	0.001	0.816	0.667	-1.599	1.601	0.001	0.999		<u> </u>			
Garcia et al 1989	Dyn-to-Con-Comparison	0.754	0.455	0.207	-0.137	1.644	1.658	0.097			+		
Hepperly et al 2006	Year 1981	0.001	0.433	0.188		0.849	0.001	0.999			_		
Hepperly et al 2006	Year 2002	0.744	0.446	0.199		1.618	1.667	0.096			+		
Kahle 2005	Org-to-Con-Comparison	0.701	0.421	0.177	-0.123	1.525	1.667	0.096			+		
Kirchmann et al 2007	Arable Production Conversion	0.001	0.816	0.667	-1.599	1.601	0.001	0.999					
Kirchmann et al 2007	Grassland Conversion	0.001	0.816	0.667	-1.599	1.601	0.001	0.999		<u> </u>			
Kirchmann et al 2007	Org-to-Con-Comparison	0.001	0.816	0.667	-1.599	1.601	0.001	0.999					
King et al 2005	Org-to-Con-Rotation-Comparison	0.895	0.535	0.287	-0.154	1.945	1.672	0.094					
Kramer et al. 2006	Apple	1.110	0.653	0.426		2.390	1.700	0.089				<u> </u>	
Kukal 2009	Maize-Wheat 0-15 cm	0.001	0.577	0.333		1.132	0.001	0.999				_	
Kukal 2009	Maize-Wheat 15-30 cm	1.017	0.605	0.366	-0.168	2.202	1.682	0.093					
Kukal 2009	Maize-Wheat 30-45 cm	1.017	0.605	0.366	-0.168	2.202	1.682	0.093					
Kukal 2009	Maize-Wheat 45-60 cm	1.024	0.605	0.366		2.202	1.692	0.091					
Kukal 2009	Rice-Wheat 0-15 cm	0.001	0.577	0.333		1.132	0.001	0.999				<u> </u>	
Kukal 2009 Kukal 2009	Rice-Wheat 15-30 cm	0.001	0.577	0.333		1.132	0.001	0.999				_	
Kukal 2009	Rice-Wheat 30-45 cm	1.017	0.605	0.355	-0.168	2.202	1.682	0.093					
Kukal 2009	Rice-Wheat 45-60 cm	1.017	0.605	0.366	-0.168	2.202	1.682	0.000					
	Giltner	0.001	1.000	1.000		1.961	0.001	0.033					
Liebig & Doran 1999 Liebig & Doran 1999	Medina	0.001	1.000	1.000		1.961	0.001	0.999					
-			0.399	0.159		2.026	3.120	0.002					
.ytton-Hitchins et al 1994 Aarinari et al 2005	Dyn-to-Con-Comparison	1.244					-0.001	0.002				_	
	April 2001 November 2001	-0.001	0.577 0.577	0.333		1.131	-0.001					-	
Marinari et al 2005 Marinari et al 2005		0.001				1.132		0.999				-	
Marinari et al 2005	September 2000	0.001	0.577	0.333		1.132	0.001	0.999				-	
Marriott & Wander 2006	Org-to-Con-Comparison	0.360	0.218	0.048		0.788	1.650	0.099					
Mazzoncini et al 2010	Org-to-Con-Comparison	0.621	0.374	0.140		1.354	1.662	0.097			+	_	
Melero et al 2006	Broad bean June 2000	1.374	0.786	0.618		2.915	1.748	0.080			1		
felero et al 2006	Melons/W. Melons Aug 2001	1.374	0.786	0.618		2.915	1.748	0.080			+		
vlelero et al 2006	Melons/W. Melons May 2000	1.374	0.786	0.618		2.915	1.748	0.080			+		
delero et al 2007	Crop rotation lentil	1.110	0.653	0.426		2.390	1.700	0.089			+		
delero et al 2007	Crop rotation wheat	0.969	0.580	0.336		2.105	1.672	0.094			+		
/lulla et al 1992	Backslope	0.353	0.212	0.045		0.769	1.660	0.097			++-		
Mulla et al 1992	Footslope	0.350	0.212	0.045		0.767	1.650	0.099			++-		
Mulla et al 1992	Topslope	0.672	0.217	0.047		1.096	3.099	0.002				-	
Oberholzer et al 2000	Org-to-IP-Comparison	0.000	0.289	0.083	-0.565	0.566	0.001	0.999			_ + _		

Study name	Subgroup within study		Statistics for each study							Std dif	f in means and	95% CI	
		Std diff in means	Standard error	Variance	Lower limit	Upper limit	Z-Value	p-Value	-4.00	-2.00	0.00	2.00	4.00
Petersen et al 1997	Org-to-Con-Comparison	0.001	0.500	0.250	-0.979	0.981	0.001	0.999			 	-	
Pimentel et al 2005	Year 1981	0.001	0.433	0.188	-0.848	0.849	0.001	0.999				.	
Pimentel et al 2005	Year 2002	0.744	0.446	0.199	-0.131	1.618	1.667	0.096			++		
Rasul and Tapa 2004	Comparison Pair	0.001	0.447	0.200	-0.876	0.877	0.001	0.999				.	
Raupp 2001	Darmstadt	0.598	0.361	0.130	-0.109	1.304	1.658	0.097			+-+	— I	
Raupp 2001	Darmstadt High Fert	0.001	0.707	0.500	-1.385	1.387	0.001	0.999				— I	
Raupp 2001	Darmstadt Low Fert	0.001	0.707	0.500	-1.385	1.387	0.001	0.999		-		— I	
Raupp 2001	Darmstadt Medium Fert	0.001	0.707	0.500	-1.385	1.387	0.001	0.999		-		— I	
Reganold 2010	0-10 cm	0.738	0.405	0.164	-0.056	1.533	1.821	0.069					
Reganold 2010	20-30 cm	0.750	0.406	0.165	-0.046	1.545	1.847	0.065					

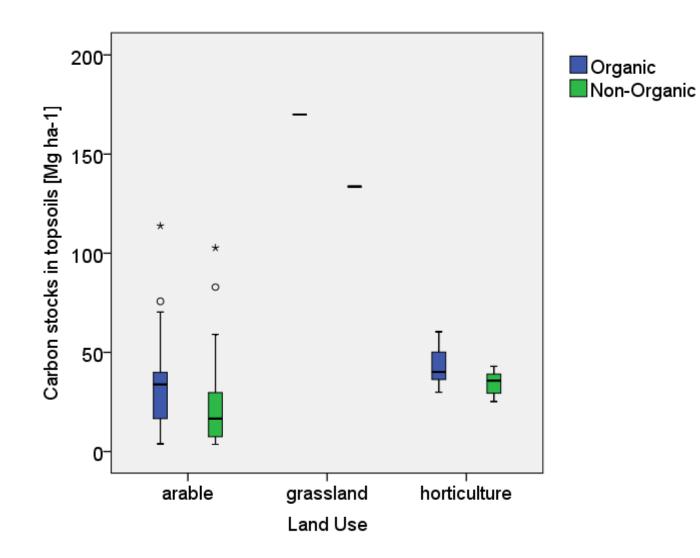
There is strong scientific evidence for higher soil carbon levels under organic farming!


	org to corr compandor mailago rai	0.000	0.000	0.042	0.707	2.102	1.001	0.002		
Blaise 2006	Nagpur	0.207	0.473	0.223	-0.719	1.133	0.438	0.661		
Capriel 1991	Farm Pair 1	0.885	0.856	0.732	-0.792	2.562	1.035	0.301		 _
Capriel 1991	Farm Pair 2	-0.085	0.817	0.667	-1.686	1.516	-0.105	0.917		
Capriel 1991	Farm Pair 3	2.264	1.046	1.094	0.214	4.314	2.165	0.030		+
Capriel 1991	Farm Pair 4	0.615	0.836	0.698	-1.022	2.253	0.736	0.462		+
Capriel 1991	Farm Pair 5	1.125	0.879	0.772	-0.598	2.847	1.280	0.201		<u> </u>
Dilly 2001	Arable	0.000	0.271	0.073	-0.531	0.531	0.000	1.000		
Dilly 2001	Grassland	0.000	0.500	0.250	-0.980	0.980	0.000	1.000		
Drinkwater et al 1995	Org-to-Con-Comparison	0.685	0.414	0.172	-0.127	1.496	1.653	0.098		
Gosling & Shepherd 2005	Org-to-Con-Comparison	0.225	0.434	0.189	-0.626	1.076	0.518	0.604		
Grandy 2007	Org-to-Con-Comparison	0.190	0.472	0.223	-0.735	1.116	0.403	0.687		
Granstedt et al 2008	Org-to-Con-Comparison	0.653	0.838	0.702	-0.989	2.296	0.780	0.436		+
Moeskops 2010	Cisarua1	4.064	1.011	1.022	2.083	6.045	4.021	0.000		
Moeskops 2010	Cisarua2	-0.901	0.522	0.273	-1.925	0.122	-1.727	0.084		
Nguyen et al 1995	Org-to-Con-to-Dyn-Comparison	3.084	0.662	0.438	1.787	4.381	4.661	0.000		├ ── ├ ──
Pulleman et al 2003	0-10 cm	-0.573	0.623	0.389	-1.795	0.649	-0.919	0.358	+	
Pulleman et al 2003	10-20 cm	0.105	0.613	0.375	-1.096	1.306	0.171	0.864	 	
		0.308	0.043	0.002	0.224	0.391	7.187	0.000	+	




Funnel Plot of Standard Error by Std diff in means

Std diff in means



Preliminary results: C stocks 12 publications, 118 data sets, n = 463

- > Introduction and objectives
- > Material and Methods
- > Results I: Descriptive statistics
- > Results II: Explorative data analysis
- > Results III: Meta analysis on soil carbon levels and stocks
- > Results IV: Factors influencing soil carbon levels
- > Summary and conclusions

Tests of Between-Subjects Effects

Source	Type III Sum of Squares	df	Mean Square	F	Sig.
Corrected Model	231.596ª	43	5.386	12.372	.000
Intercept	262.930	1	262.930	603.961	.000
Management	4.130	1	4.130	9.487	.002
Climate	24.784	6	4.131	9.488	.000
Land Use	3.623	2	1.811	4.161	.017
Continent	21.196	3	7.065	16.229	.000
Error	102.741	236	.435		
Total	1078.401	280			
Corrected Total	334.337	279			

Dependent Variable:Soil organic carbon as concentration (in %, usually mean)

a. R Squared = .693 (Adjusted R Squared = .637)

- > Introduction and objectives
- > Material and Methods
- > Results I: Descriptive statistics
- > Results II: Explorative data analysis
- > Results III: Meta analysis on soil carbon levels and stocks
- > Results IV: Factors influencing soil carbon levels

> Summary and conclusions

Summary and conclusions

- There is strong scientific evidence for higher carbon levels in soils under organic farming. Influencing factors will be further elucidated.
- There is a lack of soil carbon data for developing countries: no data from Africa and Latin America!
- Only limited data on C stocks. Further attempts will be made for getting more reliable data, important to enable calculation of C sequestration rates.

cknowledgements

Mercator Foundation Switzerland: "Meta-analysis on soil carb FAO Natural Resources Management and Environment Departr "Data consensus and data gaps related to soil carbon sequest potential of organic crop and livestock systems."

I. Data consensus and data gaps related to soil carbon sequestration potential of organic crop and livestock systems

- > Data collection
- > Data analysis
- > Data gaps and methodological difficulties
- > Preliminary results
- > Way forward (further analysis, publication, GHG study)

- Data collection: see FiBL and SEAE approach on qualifying criteria and data matrix, RTOACC members will get an update of included and excluded studies on farming system comparisons along with data/study request form
- > Data analysis: see FiBL and SEAE approach (meta-analysis)
- > Preliminary results: as shown by FiBL and SEAE with reference to Leifeld & Fuhrer (2010)
- > Data gaps and methodological difficulties:
 - poor data availability for developing countries
 - poor data availability for rice production systems and grassland (including pastoralism)

- missing values in published studies, i.e. soil bulk density for C stock calculation, t_0 values for precise sequestration rate determination, clay contents/soil texture

Carbon sequestration under organic farming (Leifeld & Fuhrer 2010; peer-reviewed: 32 studies; 68 comparisons)

Experiment setup (from-to) ^a		Duration (years) ^d	Depth (cm) ^e	Annual	change ^f (per			$N^{\rm h}$		
				Total	Experiment type ^g SOC measure					
					Plot	Farm	Concentration	Mass		
on-con		12, 13.1	20, 20	-0.16	-0.16	-	-0.21	-0.03	14	
		(3–27)	(7.5-30)	(0.45)	(0.45)		(0.64)	(0.19)		
							nic, no	5)	34	
con-con c) change r ference to	crease ifferer plicat	e under co nces due t ion of org	onventi to often janic fe	o ri	nal disp tilis	nal farm dispropo tiliser	nal farming disproportion tiliser	nal farming disproportionate	nal farming disproportionate tiliser	

Table 2 Overview of key data for the comparison of organic versus conventional farming including relative SOC change rates per year

^f Mean carbon change rate per year (percentage of reference) relative to starting value or conventional control, 1 SE in parenthesis

^g Plot controlled field experiment, Farm comparison of adjacent farms

^h Number of data sets for three experimental set-ups

> Way forward (further analysis, publication, GHG study):

 Further research is required representing climatic zones, farming systems/cropping systems: pairwise farming system comparisons on soil carbon and GHG emissions using integrative approaches (measuring, process modelling and upscaling)

GHG emissions and organic farming

- Nitrogen fixing legumes, green and organic manuring are key elements in organic crop rotation and bear the potential of N₂O losses when incorporated/applied to the soil.
- Easily available synthetic N fertiliser can be applied according to the plant nutrient status.
- > But far more less (non easily availabe organic) N fertiliser are applied in organic farming.
- Hence GHG emission rates (esp. N₂O) are lower under OF practices?

GHG emission from soils under conventional and organic management

- > Very poor data base
- Only very few system comparisons based on field measurements

No evidence-based review yet
Data only for northern countries
Request for further field measurements and reliable data sets!!!

GHG emission from soils (CO₂eq/ha) under conventional and organic management (preliminary compilation)

	Type of study	CON > ORG	CON = ORG	CON < ORG
Petersen, 2006: A, DK, FIN, I, GB	Field measurement	х		
Chirinda, 2010: DK	Field measurement		x	
Küstermann, 2008: D	Modelling	x		
Flessa, 2002: D	Field measurement	X*		
Sehy, 2003 : D	Field measurement	X*		
Lynch, 2008: Canada	Field measurement	x		
Nemecek, 2005: CH	Life cycle assessment	X**		
Hansen, 2008: N	Field measurement	Х		

* no difference when related to unit of yield

** lower GHGE in ORG when related to unit of yield

II. Organic farming systems' potential for accreditation of a methodology for the carbon market

- > Types of carbon credits (CDM, VCM)
- > Project Types
- > New and revised methodologies
- > Challenges and strengths
- > Agriculture and climate change mitigation institutions
- > Way forward (implementation)

