Data & inventories relevant for LCA of organic agriculture & food systems

•What is wanted in agricultural LCA?

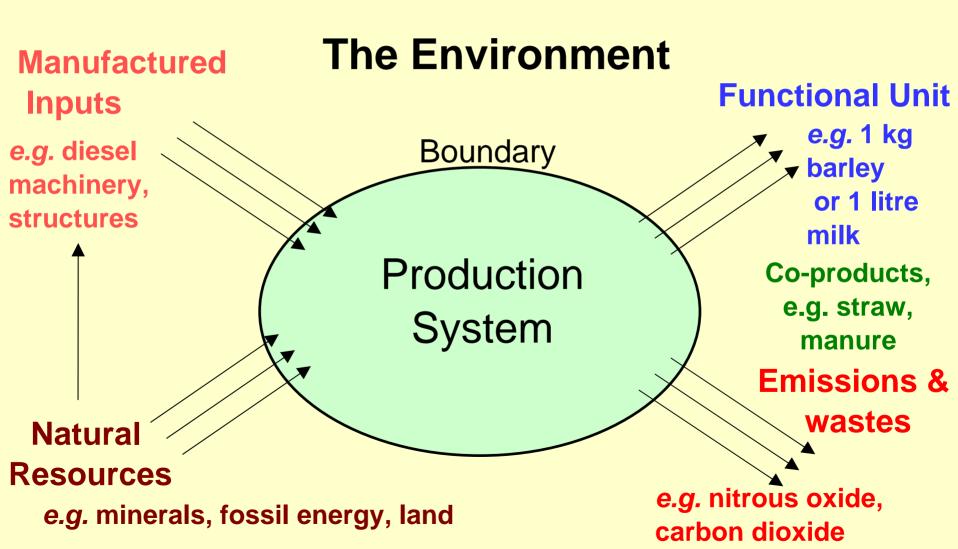
•Where/how to get it?

•Systems approach

•Differences?

•Needs for the future.

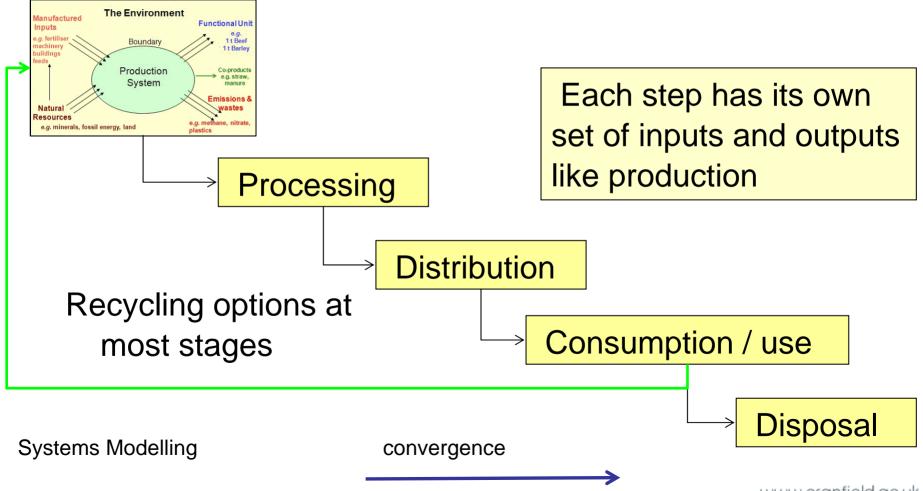
Adrian Williams, Eric Audsley Natural Resources Management Centre Laurence Smith, Organic Research Centre


What is wanted in agricultural LCA?

Basic data needs

- Inputs (including activities)
- Processes
- Outputs
- Hence:
- Useful products + Emissions + Resource Use
- What more?

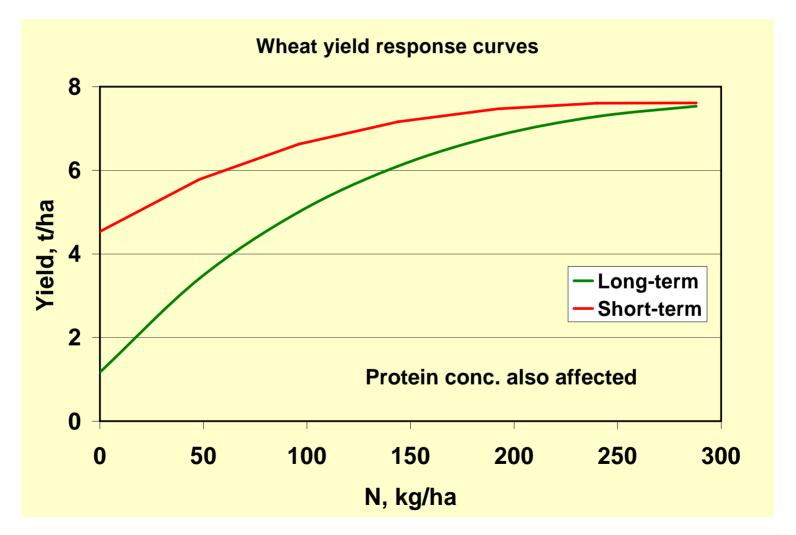
LCA Outline


Inputs = Outputs Mass flows measured at the system boundary must balance.

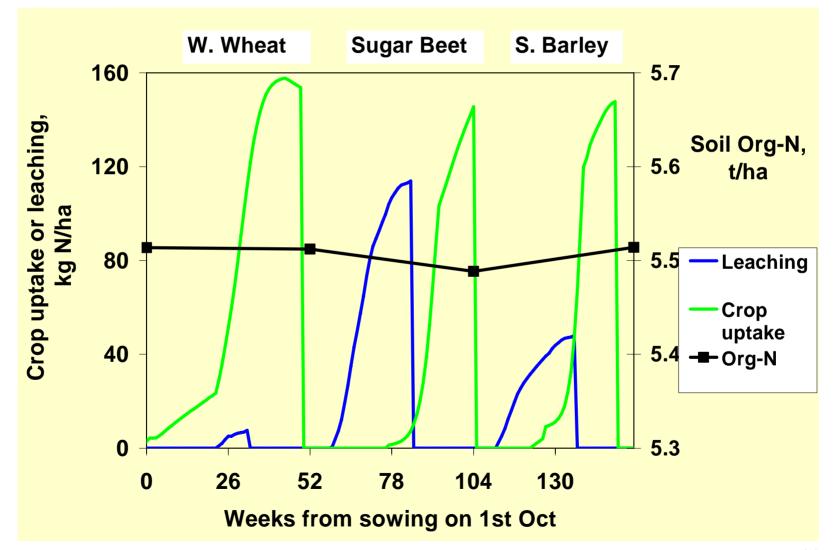
Cradle to grave is fullest application of LCA (We stop at LCIA)

Production

What more indeed?



What org and non-org differences?


- All agri-environmental science should be in common
- Purpose & timescale
- Short term illusions or long term (t.) sustainability?
- Yield data central (crops then animals)
- Long term N supply (enabling)
- N pool maintenance
- Long term N balance (emissions)
- Leaching and denitrification
- Soil & biomass C
- Weed control
- Cultivations or chemicals

Wheat yield and N supply

Cranfield UNIVERSITY

What more indeed? What org and non-org differences?

- All agri-environmental science should be in common
- Purpose & timescale
- Short term illusions or long term (t.) sustainability?
- Yield data central (crops then animals)
- Long term N supply (enabling)
- N pool maintenance
- Long term N balance (emissions)
- Leaching and denitrification
- Soil & biomass C
- Weed & pest control
- Allocation data

N cycles and flows (simplified)

- Atmospheric deposition
- Free living fixers } Plant energy
- Legume fixation
- Imports of manure, compost(ables)
- Chemical fixation (non-org only)
- N for crops in rotations
 - Stockless (sacrificial) legume
 - Tree and bush fruit
 - Grazing manure transfer from clover
 - White meat feed import and export manure
 - Local imbalances
 - Transitions

Weeds, pests etc

- Long term yields
- Minimal normal rotational cultivation
 - Mechanical & chemical + thermal
- + prevention of build up (e.g. black grass)
 - Mechanical & chemical + thermal
- Failed crops
 - non-germination to sub-standard quality
- Cordon-sanitaire effects

C balance

- Arable down
- vs. grass up (until equilibrium)
- Change in Soil C in a light loam with different annual rates of C addition (t/ha) 120 100 Mass of C in soild, t/ha 80 -0 t/ha/yr 1 t/ha/yr 60 2 t/ha/yr -3 t/ha/yr 40 4 t/ha/vr 20 0 50 100 150 200 250 Time, years
- Imports of manure & compost(-ables) balance between systems and opportunity costs
- Imports of feeds, hence manure
- Residue and primary crop yield ratios
- Systematic differences?
- IPCC defaults 2006 (not UK!)

Cranfield

Animal production

- Productivity coefficients
 - FCR, fecundity, longevity etc
- Feed requirements (energy, protein)
- Manure outputs: quantity and nutrients
- Manure credits & debits (realisation)
- Interdependencies,
 - e.g. hill, upland & lowland sheep
- Direct energy & water
- Veterinary and disinfection

e.g. Cow feeding model

• Dry matter intake =

f_d {Cow Weight, Milk Yield*, Concentrates}

• Energy required =

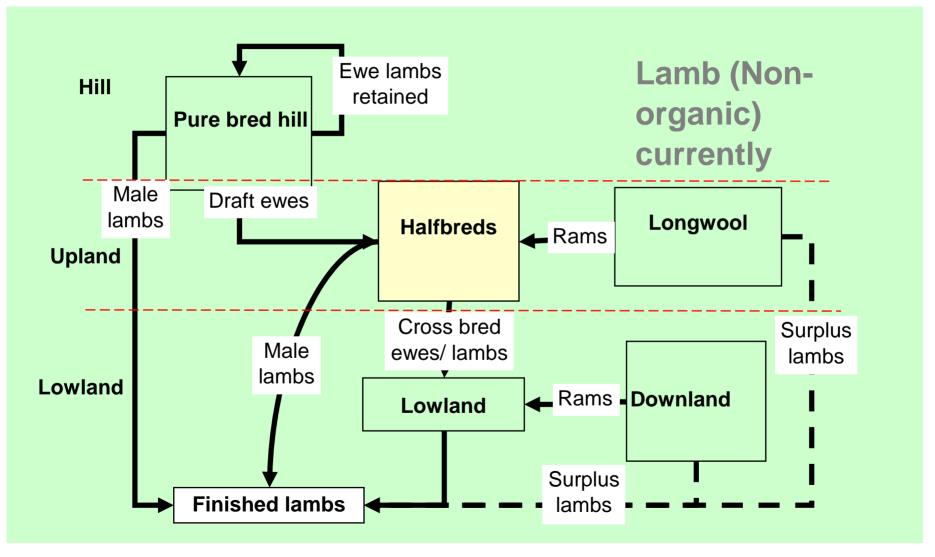
f_e {Cow weight, Milk Yield, Pregnancy}

• Protein required =

f_p {Cow weight, Milk Yield, Pregnancy}

* Includes volume and composition

- Solve for amount of forage and concentrates required
- Manure balanced



Animal production

- Productivity coefficients
 - FCR, fecundity, longevity etc
- Feed requirements (energy, protein)
- Manure outputs: quantity and nutrients
- Manure credits & debits (realisation)
- Interdependencies,
 - e.g. hill, upland & lowland sheep
- Direct energy & water
- Veterinary and disinfection

Industry Structure Model (simplified)

Animal production

- Productivity coefficients
 - FCR, fecundity, longevity etc
- Feed requirements (energy, protein)
- Manure outputs: quantity and nutrients
- Manure credits & debits (realisation)
- Interdependencies,
 - e.g. hill, upland & lowland sheep
- Direct energy & water
- Veterinary and disinfection products

Diffuse emissions +

- Emission factors
 - Usual IPCC Tiers
 - Legume fixation 2001 to 2006
 - Double to single hit! Truth?
- Systematically different, uncertainties?
- Leaching from arable, arable-ley, grass only
- Ammonia
- Phosphate
- Pesticide transfer
- Abiotic resource use

Approaches

- Analyse systems
- Quantify parts and interactions
- Take systems apart
- Take processes apart
- Rebuild them in models
- Test models
- Apply them

What is really different? (1)

- N by biological fixation (plant energy & N₂O)
- N fixation by Bosch-Haber much non-renewable energy and N₂O (1 + a) *
- N & CH₄ related emission factors?
 - None: as long as crop-animal mass balances applied properly.
 - E.g. less N in, so less N out and less offtake.
- Leaching-offtake interactions by grass-legumes (& animals)
 - No reason for difference, but much more important in organic

What is different? (2)

- Soil-biomass C?
 - Biomass transient
 - Soil C processes the same, but balance may differ (>1 location for livestock)
 - Big Q: when does grass soil C reach equilibrium across soil-climate-management types at different depths?
 - Uncertainty high
 - Grazing livestock saviour or a one way process?

Where to get data and answers?

- All agri-environmental science should be in common
- Activity data should be of common quality, but..?
 Industry (after scrutiny)
- LCA data bases cover many, but may lack particular items, e.g. veterinary medicines, Cu based fungicides
- Basic scientific literature & theory
- Commercial & public datasets
- E.g. *Ecoinvent*, <u>www.agrilca.org</u>, <u>www.foodlca.dk</u>
- LUC factors, e.g. PAS2050, but arbitrary

Needs for the future

- Research into N₂O, NO₃⁻ & offtake from legumes (grass-clover)
- Organic (i.e. high SOC) soils and IPCC N₂O
- Soil C (arable grass)
- Less usual breeds of livestock
- Tier 2-3 GHG inventories
- **Tested** soil-crop simulation C-N models for **all** locations

Needs (2)

- Activity data (rotations, cultivations, weed control, pest control)
- "domestic" and "overseas" global market how exactly are Kazakh wheat and Chinese soy grown?
- Co-product allocation
 - economic values (crop-straw, egg-hen etc)
- Other indicators

- Consequences of low yields
 - If demand increasing, who is responsible for LUC?

Many thanks for funding from Defra

Thank you

Fritillary Sunday, Ducklington, Oxfordshire