

Research Institute of Organic Agriculture Forschungsinstitut für biologischen Landbau Institut de recherche de l'agriculture biologique

State-of-the-art concerning carbon sequestration in organic agriculture versus emission of GHG and potential for climate mitigation compensation

Andreas Gattinger

(andreas.gattinger@fibl.org)

- > Organic farming and soil carbon sequestration state of the art
- > Organic farming and GHG emissions from soils state of the art
- > Potential for compensation of climate change mitigation
- > Conclusions

- > Organic farming and soil carbon sequestration state of the art
- > Organic farming and GHG emissions from soils state of the art
- > Potential for compensation of climate change mitigation
- > Conclusions

Soil organic matter and organic farming

- Increasing and maintaining soil organic matter (SOM) is a core principle in organic farming
- It is essential for plant nutrition and soil fertility built-up in organic (= low external input) farming systems
- > Diverse and legume containing crop rations and organic manuring are integral measures in OF
- Hence SOM (= soil carbon sequestration) levels are higher under OF practices?

Influence of soil texture on organic matter contents in soil under "ORG" and "CONV" management (Soil monitoring on practical farms, Bavaria)

Decreasing particle size

Influence of climate (i.e. altitude) on organic matter contents in soil

(n = 1542) Capriel, 2006

(I) Carbon sequestration in long term experiments

(Niggli et al. 2009; non peer-reviewed: 7 studies; 5 comparisons)

Field trial		Components compared	d	Carbon gains (+) or losses (-) kg ha ⁻¹ yr ⁻¹
DOK experiment, CH		Organic, FYM composted		+ 42
(Mäder, et al. 2002;		Organic, FYM fresh		-123
Fliessbach et al., 200 ⁻	7)	IP, FYM, mineral fertilizer		-84
Running since 1977		IP, mineral fertilizer		-207
SADP, USA, (Teasda	•			+ 810 resp + 1783
2007), 1994 to 2002	Avera	ige difference		0
Rodale FST, USA, (H	between	the best organic		1218
al., 2006; Pimentel, et	and the	e conventional		857
Running since 1981	treatn	nents: 590 ka		217
Scheyern Experiment	carbon	(22tCO) per		+ 180
(Rühling, et al. 2005)	boot	$(2.2.00_2)$ pc		- 1 20
Frick reduced tillage e	necla	ale and year.		0
(Berner, et al., 2008),	since 2002	Organic, reduced tillage		879

(II) Carbon sequestration in long term experiments (Soil Association 2009; non peer-reviewed: 39 studies, more than 100 comparisons)

(III) Carbon sequestration under organic farming (Leifeld & Fuhrer 2010; peer-reviewed: 32 studies; 68 comparisons)

Table 2 Overview of key data for the comparison of organic versus conventional farming including relative SOC change rates per year

Experiment setup (from-to) ^a	Duration (years) ^d	Depth (cm) ^e	Annual change ^f (percent)				$N^{\rm h}$	
			Total	Experiment type ^g		SOC measure		
				Plot	Farm	Concentration	Mass	
con–con	12, 13.1	20, 20	-0.16	-0.16	-	-0.21	-0.03	14
	(3–27)	(7.5–30)	(0.45)	(0.45)		(0.64)	(0.19)	
• 2.2% a	nnual Corg	, increa	se u	nder	orga	nic, no	5)	20
increas	e under co	onventi	onal	farm	ing			34
^a con-con c •differe	nces due f	to ofter	n disj	prop	ortion	ate	rith	either
(b) change r reference to applicat	tion of org	<mark>janic fe</mark>	rtilis	er			s w	ithout
^b Relative t ^c Relative t	a from dev	velopin	g co	untry	<mark>inclu</mark>	uded		
^d Median, r								
^e Median, mean (min and max))							
^t Mean carbon change rate per	year (percentage of ref	erence) relative t	o starting v	value or cor	ventional co	ontrol, 1 SE in parer	thesis	
^g <i>Plot</i> controlled field experime	ent, Farm comparison o	of adjacent farms						

^h Number of data sets for three experimental set-ups

(IV) Carbon sequestration under organic farming (Gattinger et al., in preparation)

- > Until now 60 peer-reviewed studies were collected
- Review will be based on meta-analysis and multiple analysis of variance

No results yet!
Until now only 4 studies from developing countries. No African study at all.
Request for further reliable data sets!!!

- Organic farming and soil carbon sequestration state of the art
- Organic farming and GHG emissions from soils state of the art
- > Potential for compensation of climate change mitigation
- > Conclusions

GHG emissions and organic farming

- Nitrogen fixing legumes, green and organic manuring are key elements in organic crop rotation and bear the potential of N₂O losses when incorporated/applied to the soil.
- Easily available synthetic N fertiliser can be applied according to the plant nutrient status.
- > But far more less (non easily availabe organic) N fertiliser are applied in organic farming.
- Hence GHG emission rates (esp. N₂O) are lower under OF practices?

GHG emission from soils under conventional and organic management

- > Very poor data base
- Only very few system comparisons based on field measurements

No evidence-based review yet
Data only for northern countries
Request for further field measurements and reliable data sets!!!

GHG emission from soils under conventional and organic management (preliminary compilation)

	Type of study	CON > ORG	CON = ORG	CON < ORG
Petersen, 2006: A, DK, FIN, I, GB	Field measurement	X		
Chirinda, 2010: DK	Field measurement		X	
Küstermann, 2008: D	Modelling	Х		
Flessa, 2002: D	Field measurement	Х*		
Sehy, 2003 : D	Field measurement	X*		
Lynch, 2008: Canada	Field measurement	x		
Nemecek, 2005: CH	Life cycle assessment	X**		
Hansen, 2008: N	Field measurement	Х		

* no difference when related to unit of yield** lower GHGE in ORG when related to unit of yield

www.fibl.org

- Organic farming and soil carbon sequestration state of the art
- Organic farming and GHG emissions from soils state of the art
- > Potential for compensation of climate change mitigation
- > Conclusions

Mitigation practices/methodologies typical for sustainable farming practices

- > Fertilizer replacement
- > Composting
- > Soil Carbon Sequestration (no approved methodology yet)
- > Methane recovery from manure
- > Avoided biomass burning
- > Agroforestry
- > Biogas electricity
- > Crop rotation with legumes (no approved methodology yet)

Most agricultural projects need to be big to achieve critical size

Project size in ha to achieve 30'000t CO2e/a

gases mitigation projects, South Pole 2010)

Number of CDM projects per sector* (Status 1 May 2010)

Combination of methodologies in the context of organic farming

Estimation based on an optimised crop rotation including optimized manure handling

...an even higher potential when mitigation practices are combined with co-benefits of OF

The generation of co-benefits for mitigation projects in developing countries as a result of the carbon credit trading. These are:

- Positive environmental impacts: soil fertility, biodiversity, resource conservation
- > Contribution to food security: yield increase and yield security
- A new income opportunity for small holders: empowerment, food security

Many different voluntary standards exist, of which the most important are the Gold Standard...

The Gold Standard Premium quality carbon credits

Aims

Quality label which guarantees:

- Effective emission reductions
- Direct contributions to sustainable development

Founded by WWF & other NGOs

Requirements

- Increased consultation of local stakeholders
- Limited to ER and EE project
- Verification of sustainable development indicators

Characteristics

- Sell at higher prices
- Greater post-2012 security
- Simplified approval procedure for micro projects (ER<5000pa)

South Pole Specializes in Gold Standard projects

http://www.cdmgoldstandard.org/

- > Organic farming and soil carbon sequestration state of the art
- > Organic farming and GHG emissions from soils state of the art
- > Potential for compensation of climate change mitigation
- > Conclusions

Conclusions

- No consolidated data available yet on carbon sequestration and GHG fluxes under organic farming practices
- Pairwise field/farm trials are necessary (esp. GHG fluxes) combined with process models for further upscaling
- Organic farming practices offer potential for compensation of climate change mitigation

Thank you very much for your attention!