

SOC sequestration in farming systems in Africa: Potential, opportunities and challenges

S. Zingore Africa Programme Coordinator

Condition for farmers in SSA

- Depend strongly on recycling of organic matter, but very limited availability
- Limited labor availability
- Relatively small, fragmented farms
- Rain-fed farming
- Soil are predominantly inherently infertile
 OHighly weathered

Vast areas under fragile sandy soils

Condition for farmers in SSA

Constraining socio-economic environment

Rapid population growth (PD up to 700)
Poor infrastructure
Poor market access
Poor access to information
Land tenure problems

Overview of farming systems in Africa

Good potential zones

Life Cycle Assessment (LCA) - methods, models and databases with focus on GHG emission and sequestration potential of organic farming systems and organic food.

✓ Rapid decline in SOC with little organic inputs✓ Greater potential to sequester C in clay soil

SOC dynamics

✓ Cropping system contributes little to SOC✓ Part of the original C persistent

SOC stocks

Soil organic carbon	World	Africa
SOC stocks (Pg C)	1462 - 1548	170–180
SOC density (kg C m ⁻²)	$10 \cdot 9 - 11 \cdot 6$	6 · 4–6 · 7

SOC stocks

Particle size distribution, mineralogy and land-use

Complex heterogeneity within farming systems

Land degradation

Land degradation

C sequestration options

- No 'silver bullets'
- System and farm type specific
 - $_{\odot}\mbox{Access}$ to resources
 - oLabour
 - \circ Gender
- Immediate benefits
- Low risk

Feasibility and impact of various options

	Feasibility	Potential C gain
Non degraded soil		
Reduced tillage	Н	M/L
Cereal crop residues	Μ	M/L
Manure	Μ	M/H
Compost	н	L
Grain legumes (intercrops/rotation)	н	Μ
Agroforestry/cover crops	L/M	M/H
Natural fallow	L	L
Water conservation	Μ	Μ
Degraded soils		
Reduced tillage	н	L
Cereal crop residues	L	M/L
Manure	L	M/H
Compost	L	L
Grain legumes (intercrops/rotation)	Μ	Μ
Agroforestry/cover crops	M/H	M/H
Natural fallow	Μ	М

Livestock manure

- Effective at SOC sequestration
- Limited quantities
- High labour demand
- High grazeland:cropland ratio required

Crop rotation – grain legume

- Attractive for nutrition and income, soil N
- High N harvest indices
- Fast decomposing
- Fail to perform in poor soils

Cereal crop residues

- Potentially high availability
- Many competing uses
- N immobilization
- Pest and diseases problems

Most effective when combined with reduced tillage

Agroforestry / cover crops

- Multiple benefits
- Long-term investment
- Competition for labour
- Fail to perform in poor soils/low rainfall areas

Potential C sequestration niche for Organic Farming in Africa

- High SOC deficits
- Favorable environments
 - Medium-high rainfall
 - More fertile soils
- Areas with good access to markets
- Enabling policy environments

Dealing with the complexity

- Understanding of farmer reality, socioeconomic and biophysical heterogeneity necessary
- Promote flexible, farmer-friendly, market oriented technologies
- Promote local adaptability

Dealing with the complexity – Integrated Analysis of smallholder farming systems

Decision support tools

Concluding Remarks Dealing with the complexity

- Understanding of farmer reality, socioeconomic and biophysical heterogeneity necessary
- Promote flexible, farmer-friendly, market oriented technologies
- Promote local adaptability

Thank you

